
Data cleaning with Regular Expressions

By Christian McDonald. Updated Fall 2018.

NOTE: To work with Regular Expressions, it is very helpful to have a ​code editor​ that supports
them. While this lesson/session mostly uses ​regex101.com​, that site can handle only so much
data. In practice, I tend to use regex101 to test my formulas, then execute them in a code editor.
I use ​VS Code​ for this lesson.

Regular expressions (or regex) is a programming language used to match patterns in text, so it
is VERY useful in cleaning data. This lesson is just an introduction to a very powerful
programming skill.

Key concept: patterns

Let's say you have a list of phone numbers in 10-digit format -- ​512-555-1212 ​ -- but you want
the area code to be in parenthesis: ​(512) 555-1212 ​. You could do a simple search of the
512 area code followed by a dash ​512- ​ and replace it with an area code in parenthesis and a
space: ​(512) ​.

But what if there are different area codes in the list?

512-555-1211

301-333-1212

404-123-1213

With regular expressions, you can search for a pattern of characters and save it as a group.
Instead of searching just for ​512- ​, you can look for "three numbers together at the beginning of
a line that are then followed by a dash".

If you save that matching pattern as a group, you can then replace that group with parenthesis
outside it, no matter what the contents of the group. If that saved group is called ​\1 ​ then you
can replace it with ​(\1) ​ and it doesn't matter if ​\1 ​ is equal to ​512- ​ or ​301- ​.

Special characters, commands and escape

Let's touch quickly on the syntax of regular expressions. Don't get hung up if these sound like
gibberish, because it will make sense more when we start using it. Your ​Regex Cheat Sheet​ (or
this alternative​) comes in handy here.

Regular expressions use special characters to do special things, like match the beginning of a
line. These commands are called tokens:

● ^ ​ will find the beginning of a line.
● * ​ will find "zero or more" of whatever precedes it.

https://docs.google.com/document/d/1vxqW2B0JkRov-V2sRtBSuOHIOdP71WH-5qBFDQvuUY8/edit
https://regex101.com/
https://code.visualstudio.com/download
https://drive.google.com/file/d/0B8ConnGcXrv8MzE3SWtwU2NxQk0/view?usp=sharing
https://drive.google.com/open?id=0B8ConnGcXrv8bnJwdEtWVGx4N0E

Regular expressions use the backslash (the one above return on the keyboard: ​\ ​) with other
characters to create more tokens to do special things:

● \d ​ will find any number character (or digit).
● \D ​ will match anything other than a number.
● \t ​ is a tab character, because hitting the tab on the keyboard will perform the action

instead of giving you the character.

But then sometimes, you actually need to find the character ​^ ​, and not use it as a command.
Regular expressions use the ​\ ​ to give the literal expression of a character that would otherwise
be a token:

● * ​ will find the asterisk character instead of modifying the query to find "zero or more".

Enough of that. Let's do this, with the help of ...

Regex101.com

Regex101​ is a great way to not only build regex patterns, but to also learn how they work. Go
ahead and launch that site in a browser so we can work with it here in a minute.

We're going to use this site to split some address data into their parts. Let's talk about the data
first.

Splitting Socrata addresses

Many government agencies use ​Socrata​ as their open data portal: From ​Austin​ to ​Boston​; from
Los Angeles​ to ​New York​.

Some of the data sets in Austin have all the address parts crammed into a single field. Regex
can easily explode that into individual columns.

Our goal is to turn this:

into this:

https://regex101.com/
https://opendata.socrata.com/
https://data.austintexas.gov/
https://data.cityofboston.gov/
https://data.lacity.org/browse
https://nycopendata.socrata.com/

The goal in a nutshell

We are building a pattern in our regular expression field, creating a group to capture each part
of the address that we want to keep. We'll continue the pattern outside the group until we get to
the next part we want to keep, when we'll create a new group, and so on.

You'll want to reference your ​Regex Cheat Sheet​ (or ​this alternative​).

Let's get started:

● View the file ​socrata_addresses.txt​ and copy and paste the contents into the "TEST
STRING" of ​regex101.com​.

● Note this is just one column from a larger Socrata data set of ​restaurant inspection
scores​ in Austin, TX. (When I want to clean a single column of data, I often download the
data and will just copy out one column into my text editor and work it before pasting back
the results into Excel, carefully making sure they still line up.)

● Let's look at our data a little closer:

○ Notice the address, city, state, zip, latitude and longitude are all in the same "cell"

(what is inside the quote marks), but the content of the cell has returns in it. We
want to split these six distinct pieces into their own columns for each record.
Why? Many reasons, but one is to use the latitude and longitude for data
visualizations.

○ We will build a Regular Expression pattern to capture six groups and then search
and replace to put tabs between each group, so we can put it back into Excel.

● In regex101, in the right-hand box of the REGULAR EXPRESSION string, click and add
the modifier "multi line" so it now says "​gm​". 1

● On the left-hand pane, make sure the ​FLAVOR​ is set on "javascript". 2

1 ​On the modifier "gm": The "g" is for "global", as in find all occurrences, not just the first one.
The "m" is for "multi-line", which allows us evaluate each line separately. I almost always use
"gm" when doing search and replace like this.
2 ​Different programming languages have little differences in how they handle Regular
Expressions. The concepts are the same, but sometimes the syntax is different. VS Code and
Atom use the "javascript" flavor, so we will use that. TextWrangler and Sublime use this "pcre"
flavor. The main difference I deal with is the replace string, where a "group" is accessed with "$"
in javascript and "/" in php.

https://drive.google.com/file/d/0B8ConnGcXrv8MzE3SWtwU2NxQk0/view?usp=sharing
https://drive.google.com/open?id=0B8ConnGcXrv8bnJwdEtWVGx4N0E
https://docs.google.com/a/utexas.edu/file/d/0B8ConnGcXrv8UEwybHJEcHJrbTQ/edit
https://regex101.com/
https://data.austintexas.gov/dataset/Restaurant-Inspection-Scores/ecmv-9xxi
https://data.austintexas.gov/dataset/Restaurant-Inspection-Scores/ecmv-9xxi

Capturing the address

● We know that the first line starts at the beginning of the line, so we can start with this
token, which signifies that: ​^

● Now, in the end, we don't want to keep the double-quote, so we won't put it inside a
group. We'll just add it to the pattern: ​^ ​"​.

● Take note for a minute at the number of matches at the top right: There are 325
matches, and that is how many records we should end up with. You'll want to keep
referring back to that and making sure you have 325 groups.

● Next, we'll start our first group with parenthesis: ​^" ​()​. You'll see as you type in the first

parentheses, regex101 ​might​ also put in the second and then put your cursor in the
middle of them. This is "code completion", and good code editors do this to help you be
more efficient. (If this doesn't happen for you, please hollar so we can set this up.)

● In this first group, we want the whole address, which is everything on this line, until the
line ending. The period token ​. ​ means "any character", and ​* ​ means "zero or more", so
put these together and we get everything: ​^"(​.*​) ​.

Let's take a minute to explain more about Regex101 and how it helps you.

Each matching group gets a color, and the contents of the match is shown in MATCH
INFORMATION. The EXPLANATION section tells you exactly how each token is used, and the
QUICK REFERENCE section is a list of tokens you can use, more in depth than the cheat sheet
I've started you with.

OK .. on with it.

● Before we can start capturing the second group with the city, we need to add the return
to the pattern so it can start recognizing the next line. But here's the drive-you-crazy
thing: Windows and Macs treat these differently. On a Mac, ​\n ​ is a "new line". If you are
on a Windows machine, you'll need to use ​\R ​. The regex101 editor will recognize either,
but later when we do the search and replace in your code editor, you have to use the
character that works with your operating system. This tutorial will use Macs, so:
^"(.*) ​\n​.

● (If we end up with PC's in this lab, you'll need to use ​\R ​ every time you see ​\n ​ in this
tutorial.)

● Sanity check: This what your screen should look like:

Capturing the city

● Now, let's grab the city. As we look through the list, we can see there is more than
Austin, and some of these names have spaces so we can't find just letters alone. There
are MANY ways to do this, but we'll do it here by creating a group first: ​^"(.*)\n ​()​.

● Then inside the group we'll put a token that looks for word characters: ​^"(.*)\n(​\w​) ​.
● Then we'll add the quantifier ​+ ​ to find "one or more" of what's in the character set:

^"(.*)\n(\w ​+​) ​.
● Make sure we are capturing all 325 groups. We should be good.

Capturing the state

● These are all the same, all in TX, so we don't really have to save it at all, but we will.
We'll use this to remind ourselves that you can also just match a string literally. First we
put the comma and space outside the second group, since we don't want to keep it:
^"(.*)\n(\w+) ​, ​.

Catching errors

● Now, take a moment and check how many matching groups we have. Wait ... WHOA ...
we have only 314. What could've gone wrong?

● Scroll down the Test string until you find something amiss. The colors help you spot
problems easily.

● What is the difference between the working lines and the ones that aren't? Something

about the city.
● BEE CAVE and WEST LAKE HILLS have spaces while AUSTIN and PFLUGERVILLE

do not. It looks like our city group did not capture a needed space, which wasn't really
revealed until we tried to carry out the pattern with the ​, ​ that is found after the city. This
happens, a lot … we need to back up and fix the error.

● Right now, our expression is this: ​^"(.*)\n(\w+), ​ and the part that captures the city
is ​(\w+) ​. We need use use something called a "character set" that allows us to use
more than one token within a group. We signify this by putting what we want inside of
square brackets: So we need to put the ​\w ​ inside square brackets along with the space
so we can catch both: ​^"(.*)\n(​[\w]​+), ​.

Back to the state

● Then we create our third group with TX inside it: ​^"(.*)\n([\w]+), ​(TX)​. We are
looking for the literal text TX because there are no other states in this data set. We can't
skip it because we need the pattern to continue.

Sanity check. Here is what you should have:

Capturing the ZIP

● Again, we don't want to keep the space between the state and ZIP, so we'll put it outside
the third group, and start our fourth one for ZIP: ​^"(.*)\n([\w]+), (TX) ​ ()​.

● All of these zip codes are of the 5-digit variety, so this can be less complicated than it
would with the 9-digit version. Again, there are many ways to do this, but we'll use ​\d ​ for
the numbers and ​* ​ to to capture zero or more of them: ​^"(.*)\n([\w]+), (TX)
(​\d*​) ​.

● Complete the pattern for this line with the new line token: ​^"(.*)\n([\w]+), (TX)
(\d*) ​\n​.

● Sanity check: This is where we are …

Capturing latitude

● We don't want to keep the parenthesis that starts this last line, so we'll put it outside a
group. However, since parenthesis mean something special in regex, we need to escape
it with a backslash so it will find the character and not start the new group:
^"(.*)\n([\w]+), (TX) (\d*)\n ​\(​. Code completion might make this tricky,
but you can do it!

● Now we can start our new group, so go ahead and add the beginning and end
parentheses: ​^"(.*)\n([\w]+), (TX) (\d*)\n\(​()​.

● Inside our fifth group, we need numbers and the decimal point. We will create a
character set and put inside it ​\d ​ for numbers and ​\. ​ for the decimal point, which we
have to escape since . means "any character". We finish it off by using ​+ ​ to look for one
or more of the characters in the set. Like this:

● ^"(.*)\n([\w]+), (TX) (\d*)\n\((​[\d\.]+​) ​.

Capturing longitude

● We don't need the comma and space in our next group, so we put it outside to keep the
pattern going: ​^"(.*)\n([\w]+), (TX) (\d*)\n\(([\d\.]+) ​, ​.

● We can get the longitude like we did latitude, but we have to add the hyphen to the
character set. So, create the group:

● ^"(.*)\n([\w]+), (TX) (\d*)\n\(([\d\.]+), ​()​.
● Add the character set:
● ^"(.*)\n([\w]+), (TX) (\d*)\n\(([\d\.]+), (​[]​) ​.
● And inside of it, put ​\d ​ for digits, ​\- ​ for the hyphen and ​\. ​ for the decimal point:
● ^"(.*)\n([\w]+), (TX) (\d*)\n\(([\d\.]+), ([​\d\-\.​]) ​.
● Add our quantifier to get one or more:
● ^"(.*)\n([\w]+), (TX) (\d*)\n\(([\d\.]+), ([\d\-\.] ​+​) ​.

● Because the trailing parentheses and quote are at the end of a line, we could ignore
them, but we won't. We'll add them to the end of the pattern, escaping the close
parentheses just to be sure:

● ^"(.*)\n([\w]+), (TX) (\d*)\n\(([\d\.]+), ([\d\-\.]+) ​\)"​.

You have it all! 325 matches into 6 different groups.

The substitution string

Now that we have a pattern with our six groups of data, we can substitute them in any order
want using a search and replace, and we can build our substitution string right here in
Regex101 as well.

Underneath our TEST STRING window, you'll see another header called SUBSTITUTION with
a big plus sign on the right side of the window. Click the plus to expand the substitution window.

Now we can build a substitution string, and we can see the cleaned data in the window below.

Our goal with the substitution string is to pull back our six groups, but to put tabs in between
each of them. If we can build a search and replace like this, then we can paste the result back
into Excel, and each group will become its own column.

A quick refresher from our intro: Once we've built a group, we can reference it in our substitution
string by its order using a backslash before it's order number. So, if we want to reference our
first group, we use this: ​$1​. Put that in the SUBSTITUTION string box, like this:

● You can see that Regex101 is now pulling back our address.
● We can't just type a tab key after our group because they keyboard command will move

us to another box, so we use the token for tab, which is ​\t ​. So, add that to the end of
our substitution string to get this: ​$1 ​\t​. You'll see space get added into our substitution
example.

● Now we can add our next ordered group to our substitution string and see our city get
added on: ​$1\t ​$2​. Here is a sanity check:

● Now that you see how it works, let's go ahead and add the rest of the groups, all with

tabs in between them: ​$1\t$2 ​\t$3\t$4\t$5\t$6​. Your screen might look a little
different than below if the lines start wrapping.

Now, you might try copy 'n' pasting this result into Excel and see if it works, and this can work
fine for a small data set. But often, I use regex101 to figure out my patterns, but then use them
in my text editor on a much larger data source. We'll do this so you have the practice.

You can actually save this in regex101 under SAVE & SHARE in the far left panel.

My example is saved here: ​https://regex101.com/r/dVFG6T/1/

Search and replace in the text editor

We are almost done. Go ahead and launch your text editor if you haven't already. We'll show
this first in VS Code.

● Take your TEST STRING data (not the expression, but the data) and paste it into a new
next file in your text editor. (Or grab it from the file you downloaded.)

● Go under the Find menu to "Replace" (or do control-H for PC, command-option-F for
Mac) to bring up the search window at the bottom of your text box.

● Copy the Regular Expression pattern you built in Regex101 and insert into the "Find
what" in Sublime.

● Copy the Substitution pattern and insert it into the Replace field in "Replace with".
● Click on the button on the far-left of the Find what line, the one that has ​.* ​ in it.
● Check the fourth box with a circle symbol, which is "Wrap around", which is the same as

"multi line" that we choose when we started in regex101.

Here is what the search and replace screen looks like:

https://regex101.com/r/dVFG6T/1/

● Now, hit the "Replace All" button and watch the magic happen.
● Once you run the search and replace, you can copy and paste the results into a

spreadsheet and it will be six distinct columns. (If it doesn't, hollar.)

Other text editors

The search and replace functions are a little different in other text editors:

Atom text editor

Atom uses JavaScript notation instead of PCRE, so you have to use ​$1 ​ instead of ​\1 ​ on the
replace strings:

Sublime Text

Sublime Text and Text Wrangler below use the "pcre (php)" flavor of regex, with means the
replace groups use ​/1​ to signify group replacement.

Text Wrangler

NotePad++

Windows PCs sometimes handle the token for returns a little differently, using ​\R ​ for a return
instead of ​\n ​. Regex101 understands both, but sometimes Notepad++ wants that ​\R ​. So here
is the search window for NotePad++:

More Regex

There are lots of sites and tutorials on regular expressions, but
http://www.regular-expressions.info/​ is one of my favorites.

And remember, if you are stumped by something, chances are you are not the first. Google and
Stack Overflow are your friends.

http://www.regular-expressions.info/

